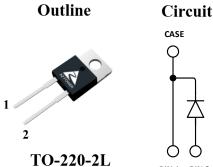


Features:

- 650V Schottky Diode •
- Zero Reverse Recovery Current .
- High Frequency Operation •
- Positive Temperature Coefficient •
- Temperature independent • Switching


Applications:

- Switch Mode Power Supply •
- Booster diodes in PFC, DC/DC •
- AC/DC converters

Benefits:

- Unipolar Rectifier •
- Minimal switching loss •
- Higher Efficiency •
- Low cooling requirement •

Symbol	Value	Unit		
V _{RRM}	650	V		
$I_F \ (Tc = 145^{\circ}C)$	15	А		
Qc	32	nC		

Symbol	Parameter	Value	Unit	Test Conditions
V _R	DC Peak Reverse Voltage	650	v	T _J =25°C
V _{RRM}	Repetitive Peak Reverse	650	v	$T_J = 25^{\circ}C$
V _{RSM}	Surge Peak Reverse Voltage	650	V	T _J =25°C
I _F	Continuous Forward Current	42 19 15	А	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 135^{\circ}{\rm C}$ $T_{\rm C} = 145^{\circ}{\rm C}$
I _{FRM}	Repetitive Peak Forward Surge Current	88 79	А	$T_{\rm C}$ =25°C, $T_{\rm P}$ = 10ms, Half Sine Wave Tc = 125°C, $T_{\rm P}$ = 10ms, Half Sine Wave
I _{FSM}	Non-Repetitive Peak Forward Surge Current	119 107	А	$T_{c} = 25^{\circ}C$, $T_{p} = 10$ ms, Half Sine Wave T $c = 125^{\circ}C$, $T_{p} = 10$ ms, Half Sine Wave
PD	Power Dissipation	150 50	W	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 125^{\circ}{\rm C}$
T _{J,max}	Operating Junction Temperature	175	°C	
T _{stg}	Storage Temperature Range	-55 to 175	°C	

Maximum Ratings

S2D065V015A, Rev. 1.0

Page 1 of 5

Thermal characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
RthJC	Thermal resistance		1.0		°C/W

Electrical Characteristics

Symbol	Parameter	Value		T	Test Conditions	
		Min.	Тур.	Max.	Unit	Test Conditions
VDC	DC Blocking Voltage	650			V	$I_R = 100 \mu A, T_J = 25^{\circ}C$
V-	Forward Voltage		1.55	1.8	v	$I_F = 15A, T_J = 25^{\circ}C$
▼ F	V _F Forward Voltage 1.9 2.2	v	$I_F = 15A, T_J = 175^{\circ}C$			
т	I _R Reverse Current		5	100	μΑ	$V_{R} = 650V, T_{J} = 25^{\circ}C$
IR			10	250		$V_R = 650V, T_J = 175^{\circ}C$
Q _C Total Capacitive	Tetal Conceiting Change		32		nC	$I_{\rm F} = 15$ A, dI/dt = 350A/µs
	Total Capacitive Charge					$T_J = 25^{\circ}C, V_R = 400V$
			702			$V_R = 1V, T_J = 25^{\circ}C, f = 1 \text{ MHz}$
С	Total Capacitance		94		pF	V_R =200V, T_J =25°C, f=1 MHz
			93			V_R =400V, T_J =25°C, f=1 MHz

Typical Performance

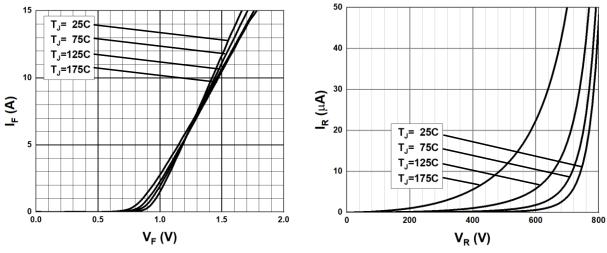
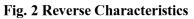



Fig. 1 Forward Characteristics

0

Typical Performance

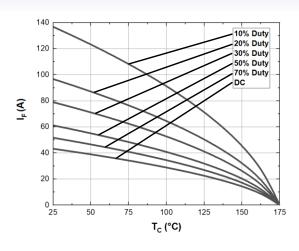


Fig. 3 Current Derating

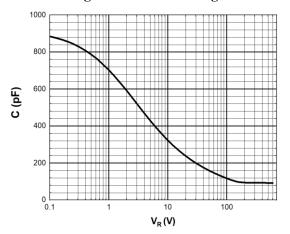


Fig. 5 Capacitance vs. Reverse Voltage

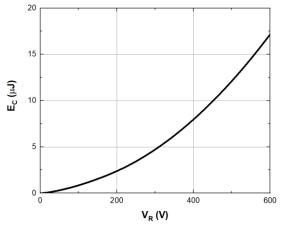


Fig. 7 Capacitance stored Energy

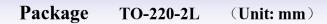
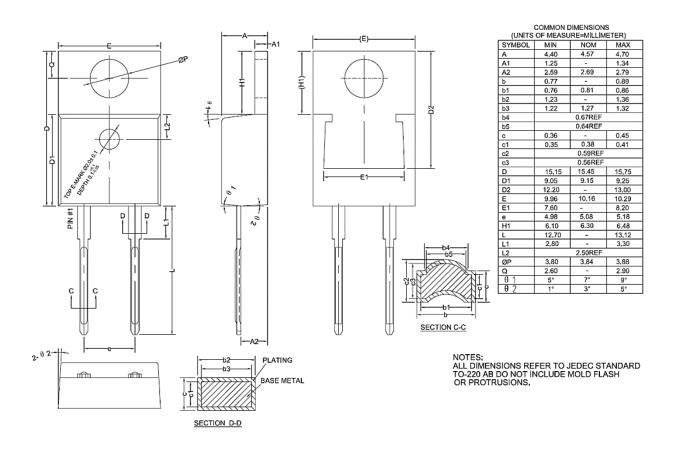




Fig. 6 Recovery Charge vs. Reverse Voltage

S2D065V015A, Rev. 1.0

0

0

0

•

0

0

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC(RoHS2), as implemented January 2nd, 2013.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact an AZ Power representative to ensure you get the most up-to-date REACH SVHC declaration. REACH banned substance information (Reach Article 67) is also available upon request.

This Product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, systems, or air-traffic control systems.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, AZ Power Inc. disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

5601 W SLAUSON AVE 190 CULVER CITY, CA 90230 WWW.AZPE.COM

Information in this document may change without notice. All referenced product or service names and trademarks are the property of their respective owners. Copyright © 2020 AZ Power Inc. All rights reserved.